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TECHNICAL NOTE 3969

A THEORETICAL STUDY OF THE EFFECT OF UPSTREAM
TRANSPIRATION COOLING ON THE HEAT-TRANSFER
AND SKIN-FRICTION CHARACTERISTICS COF A
COMPRESSIBLE, LAMINAR BOUNDARY IAYER

By Morris W. Rubesin and Mamoru Inouye

SUMMARY

An snalysis 1s presented which predicts the skin-friction and heat-
transfer charscteristics of a compressible, laminer boundery lsyer on &
solid flat plate preceded by & porous section that is transpirastion cocled.
The analysis is restricted to a Prandtl number of unity and linear
veriation of viscosity with temperature.

The local skin friction has been found to have a low value in the
region of transpiration cooling and then to increase until it approaches
the value for a completely nonporous surface asymptoticelly. The inltial
increase in local skin friction is rspid as half of the ultimate increase
occurs in a distance beyond the porous region that is ebout 20 percent of
the length of the porous region for 8ll rates of injection. When the
total coolant flow rate is kept constant and the porous length is varied,
it is found that the aversge skin friction on & partially porous plate is
glightly lower than that on a fully porous plate.

The local heat transfer behaves in a manner similar to that of the
locel skin friction. It is found, in an example, that the temperature
at the end of & partially porous plate could be maintained at about the
seme tempersture as a fully porous plate by doubling the totel rate of
coolant flow.

INTRODUCTION

For flight at high speeds, aerodynamic heatlng often requires the
cooling of aircraft in order to maintain tolereble surface temperatures.
Of the various cooling techniques availgble, transpiration cooling systems
are usuelly effective for this application, as is shown in reference 1.
This results because the geometry of the porous surface provides for
excellent heat exchange between the coolant and the surface, and the
boundery leyer on the surface is altered so as to reduce significantly
the skin friction and the heat transfer to the surface.
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The attractiveness of transpiration cooling of lerge surfaces is
reduced by the introduction of structural problems. It 1s difficult to
manufacture large porous surfaces and to support them In use because of
their inherent weakness. To teke advantage of transpiration cooling and
also to alleviate the structural problems, the use of partially porous
surfeces offers possibilities. In this scheme, the most criticel reglons
from an serodynsmic heating standpoint could be transpiration cooled, and
the downstresm regions protected by the film of coolant that is introduced
intoc the boundery layer.

It is the purpose of this investigetion, therefore, to exsmine
theoretically the magnitude of protection offered the downstream nonporous
reglons by the film cooling process. The present analysils is restricted
to considerstion of a compressible, laminar boundery layer on a semi-
infinite Fflat plste with air as the coolant. The flat plate is dlivided
into two regions: an upstream reglon of finite length which is porous
and transpiration cooled, snd & downstresm region which is nonporous and
is protected by the upstreem cooling process.

SYMBOLS

an(x), a dimensionless coefficients in assumed velocity profile
polynomial (A19) :
(The subscript is dropped for n = 1.)

ap constant value of & for no transpiration or Blasius solution
C constant of proportionality between absolute viscosity end
absolute temperature defined in equation (A6)
cr local skin-friction coefficient, 57131—75
5 Poclo
Cp specific heat at constant pressure
2 )
R
S
Do constant, R =
%o
£(q) dimensionless stream function used in reference 2 such that
1 = o B -
£1(n) = 2
£f(o) =F dimensionless number which is proportional to the mass flow
of transpiration cooling
(See eq. 5.)
k thermal conductivity of fluid
L length of plate

Pr Prandtl number, EEE

4
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P pressure

q heat~transfer rate per unit area

R gas constant

Ry Reynolds number, based on distance x, QEZ:X

Ry» Rxo

Rao’ Ry Reynolds numbers based on 8, Xg5, By, L

s(x) slope of velocity profile at surface, <§§)y=o

T gbsolute temperature

u velocity component psrallel to surface

v velocity component normal to surface

W total coolant flow rate

b 4 transformed coordinate along surface defined in equation (A9)

xt physical coordinate along surface

y transformed coordinate normal to surface defined in
equation (A9) '

yt physlicel coordinate normal to surface

T gemme. function

el : boundary=-leyer thlckness in transformed coordinetes

5+ dimensionless boundary-layer thickness, é% = %Ei

1 similerity perameter used in reference 2, % \/%

Mg value of 1 corresponding to the edge of the boundary layer

2} dimensionless temperature function defined in equation (A59),
P-Tg
T~ Tg

T8 absolute viscosity

1 kinemstic viscosity
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R »

3 dimensionless length along surface, o= = o o
Xo Bxg
o) density v
o} dimensioniess slope of veloeclity profile at surface,
s _ 8o
g_uoos<x)
Ty shear stress at surface
() function defined in equations (A83)
Subscripts
c transpiration cooled surface
cl coolant
s surface
t stagnation conditions .
o free stream
o] conditions at end of porous region
Superscripts
1 gquentities related to original physical coordinstes
) average
ANATYSIS

Conditions and Assumptions

The anslysis 1s performed for a compressible, laminar
boundsxry layer on a nonporous flat plate behind a porous region which is
transpiration cooled. The geometry is shown in figure 1. The analysis
can employ any of existing solutions (such as refs. 2, 3, and 1) for the
trenspirstion cooled region, and use their results at x!' = x5! to begin
the present anelysis. For convenience, the solution (refs. 2 and 3) w
containing the following conditions is employed:

1. The coolant is the same as the bouhdary-lsyer fluid.
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2. The velocity of the coolant normal to the surface 1s inversely
proportional to the square root of the distsnce from the leading

edge.
3. The porous surface temperature is constant.

In addition, the following assumptions concerning the boundesry-layer
fluid are made:

l. Prandtl gumber 1s unity.
2. Specific heat at constant pressure 1s constant.
3. The fluid behaves as a perfect gas; P = pRT.

., The sbsolute viscosity varies linesrly with the absolute
temperature.

Summary of Analysis

The mathematical details of the analysis esre included in Appendix A,
and only a summery 1ls presented here.

Transformation of basic equations.- The analysis is begun with the
basic equations of continuity, momentum, and energy for a compressible,
laminar boundary layer with no pressure gradient. By use of the
Stewartson transformstion (ref. 5) in which.the physical coordinate normsl
to the surface is modified to tske into account the compressibility, the
basic equations are reduced to the equations for an equivalent, lncaom~
pressible flow. This transformation not only simplifies the equations,
but together with the previous assumptions concerning the fluid, permits
solution of the momentum equation independently of the energy equation.

Solution of momentum equation for skin frictlon.~ To begin the
present solution, 1t is necessary to start with veloclity distributions
that match those of the boundary layer at the end of the porous region
where transpiration cooling ceases. Because these velocity distributions
change from those charscteristic of transpiration cooling to those char-
acteristic of flow along & solid surface far downstream along the plate,
similerity of profiles cannot be expected, and an exsct solution is not
simple to obtain. Therefore, the momentum integral method of solution
was chosen.

A convenient and fairly accurate veloeclty distribution can be found
using the following procedure. The boundary=-layer veloclity profile for
use in the momentum integral equation is spproximated by a seventh-degree
polynomial in terms of y/3,

SRR UR VR OB ORURUIIE
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where y 18 the transformed distance normal to the surfece and & is

the transformed boundary-layer thickness. The coefficient of the first
term, a, is & measure of the shear stress or the slope of the velocity
profile at the surface. The seven unknown coefficients of the polynomial
and the boundary-layer thickness meke a total of eight unknowns to be
determined. In addltion to the momentum integral equation, seven other
equations are necessary 1n order to solve the problem. These equations
are obtained by imposing seven boundery conditions on the velocity profile.
Four of the conditions are imposed at the outer edge of the boundary layer
and three at the surface. To insure that the local velocity in the
boundary layer approaches the free-stresm veloclty smoothly, it is required
that for y =5

U = Vg
P Pu_, ()
dy oy oS

To insure that the veloclty profile has the correct slope end curvature
at the surface, the velocity distribution and the boundary conditions
u=v =0 are inserted into the basic momentum equation and its deriva-
tives with respect to y. This yields for ¥y = O (see egs. (A16), (A24k),
and (A25))

These boundary conditions permit the evaluation of the unknown coefficients
of the polynomial in terms of the first coefficient &, and lead to an
ordinery differential equation relating a, 5, and x. This equation and
the momentum integral equation are solved simultaneously along the plate.

Refore the differential equations can be solved, initial conditions
for these differential equations must be determined. The initial condi-
tions for the present solution sre obtained by matching the seventh-degree
polynomial velocity profile to the exact velocity distribution at the end
of transpiretion cooling. This is accomplished by equating the slopes at
the wall and the boundary-lsyer thicknesses of the two veloelty distribu-
tions. A problem arises in the definition of the boundary-layer thickness.
In the exact solution, the local velocity in the boundary layer approaches
the free-stream velocity asymptotically, whereas with a polynomial solu~
tion the local velocity equals the free-stream velocity at a finite
distance from the surface., In this analysis, the boundary-layer thickness
for the exact velocity distributlion is chosen as the point where
u/‘uJo = 0.9976, and the reason for this choice is in Appendix A.
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With these initial conditions, the system of two simultaneous
ordinery differentisl equations wes integrated mmerically yielding &
and a as functions of x. The local skin-friction coefficient was then
calculated directly from these results.

Solution of energy eguation.- Normslly, the surface temperature of
the nonporous region will very and differ from the constant surface tem-
perature of the transpiration cooled region. Hence, the solution of the
energy equation must sccount for surfasce tempersture variations. A con-
venient method of anslysis is to separate the solution of the energy
equation into two parts. First, a solubtion of the complete inhomogeneous
energy equatlion is found for the condltlion that the porous and nonporous
regions are at the same constant tempereture. Then solutions of the
homogeneous portion of the energy equstion are found and added to satisfy
the surface temperature boundary conditions. This addition of solutions
is permissible because the energy equation 1s linear in tempersture.

The inhomogeneous energy equation csn be expressed in terms of total
energy such that it has the same form as the momentum equation (since
Pr = 1). Then, for the case of constent surface tempersture, the boundery-
layer tempersbture distribution can be expressed in terms of the velocity
distribution, which has been solved previously.

Initislly, the homogeneous portion of the energy equation is solved
for the condition of s single surface temperature discontinulty behind
the transpiration cooled region. In order to obtain a solution, the
boundary-layer velocity profile is replaced by a linear profile having
the correct slope at the surface as determined previously in the solution
of the momentum equation. Then the temperature distribution in the
boundary layer cen be solved for in terms of & single similarity
parameter, £.

The generel solution of the energy equation, which takes into account
arbitrary surface temperature variations, is obtained by adding the solu-
tion for the inhomogeneocus energy equation to as many solutions of the
homogeneous equabtlon as required to satisfy the surface temperature
boundery condition. For an srbitrary surface temperature distribution,
the sumnstion of the solutions of the homogeneous energy equation can be
expressed as an integrsl. Hence, the genersl solutlon of the energy
equation yields the temperature distribution in the boundary layer for
an arbitrary surface temperabture distribution.

The hest-transfer rate at the surface is obtained by differentiating
the temperature distribution with respect to y!. If the surface tem-
perature is glven, the heat transfer can be determined. For the case of
a constant surface temperature, the Reynolds anslogy is spplicable, and
the local heat transfer is directly related to the loeal skin frietion.

Thus far, it has been assumed that the surface temperature distribu-
tion is given as a boundary condition. In many cases, however, the heat
transfer at the wall is given as a boundary condition, and the surface
temperature distribution is desired. This problem is solved by using sn
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integral equation based on the equation for the heat-transfer rate. In
particular, the surface temperature distribution was solved numerically
for the condition that the nonporous surface is insulated.

Results of Analysis

The results of the analysls are summarized in the following equations.

The local skin friection is given by

= = — === d(t) (%)

where

Note that both o(1) end Rg  are dependent on the trenspiration coolant

rate in the porous region and the Reynolds mumber of the porous reglon.
For exsmple, when the local blowing rate is expressed by £(0) = F where

e———

PsV v,
£(0) = -2 322 JFx = - G VFx (5)

then

Rs, = /DO(F)Rxé ' (6)

(1) = o(F) (7)

Note that Pgvs = 2pgvs because vg varles inversely eas 'J;. For
convenience Do(F) and o(F) are tabulated as functions of F = £(0) in
teble T. For £ > 1 or x > x5 & plot of o(g) for each £(0) is given
in figure 2.

If the surface temperature distribution is given, the local heat-
trensfer rate at the wall for x > Xo is found from
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de(E.l)
(&) M"'—@EBJH(T)J()osaa:mg dt,
W T Ry, ) MR N 03 Re T  Toera(e )10

(8)

where

3
) f Jo(e) at (9)
1l

The function ¢(t) is presented in figure 3 for various £(0).

If the heat~transfer rate at the surface is given, the surface
tempersture distribution can be determined from

R s (€ )
o+ (Ty-T)alt,)
T (8)-T, __L2 Pl T MR 2 at 10
S N ™ e T » 09

RESULTS AND DISCUSSION

Comparison of Polynomiel and Exact Veloeity Distribution

As expleined in the analysis, at the stert of the nonporous region,'
the seventh-degree veloclity profile must match the exact transpiration
cooling profile as given in reference 2. To do this, the polynomial
velocity was made to have the same slope at the surface and to have the .
same boundary-leyer thickness as the exact veloclty profile. A comparison
of the two entire profiles is shown in Pigure 4 for three transpirstion
cooling rates where the absolute magnitude of £(0) is proportional to _
the amount of transpirstion cooling. The agreement between the regpeétive
profiles throughout the boundary leyer is satisfactory. Becsuse the
Prandtl number is assumed to be unity, agreement of the wveloclty profiles
implies an agreement of the corresponding temperature distributions.

Skin Friction -

The effect of upstream surface transpiration cooling on the local
skin friction is shown din figure 5. The abscissa 1s the ratio of the
distance from the leading edge to the length of the porous region. The
ordinate is the locel skin-friction coefficient with upstream.transpiration
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cooling divided by the local skin friction thaet would exist with no p
transpiration cooling. This figure wes obtained from figure 2. PFor
each transpiration cooling rate, the reduction of skin friction diminishes

repidly with downstresm distance and approaches the no transpiration solu-~ L

tion asymptoticelly. For example, continuous transpiration cooling of
£(0) = -0.50 halves the skin friction. With a finite transpiration-cooled
region, however, the skin friction rises to within 13 percent of the no
transpiration value et £ = 2 and to within 5 percent at £ = 6. Similer
effects are shown for the other transpiration coolant rates.

.Heet Transfer

The effect of upstream surface transpirastion cooling on the heat-
transfer characteristice of the nonporous region was evaluated for two
cases: +the local heat transfer at the surface was determined 1f the
surface temperature distribution was prescribed, and the surface tempers-
ture distribution was determined if the local heat transfer at the surface
was prescribed.

The first case occurs when the surface temperature is constant over
both the porous and nonporous regions. By Reynolds anslogy, the effect
of upstream surface trenspiration cooling on the heat-transfer rate is
the same as the effect on the skin friction shown in figure 5. For ¥
example, at & = 2 with £(0) = -0.50, the internal heat~transfer rate
necessary to maintein a constant surface tempersture is reduced 13 percent
from the no transpiration value. Similer trends occur for the other -
transpiretion coolant rates.

An exemple of the second case occurs when the nonporous region is
insulated, or gqg(g) = O. The resulting surface temperature distribution
is shown as the ordinaste in figure 6. The ordinate is written in dimen-~
sionless form employing the temperature of the cooled upstream region and
the total temperature. It is observed for all coolant rates that the
surface temperature of the nonporous region rises rapidly at first and
ultimately approaches the recovery temperature asymptotically. The
reductlion in tempereture due to the effect of injecting transpirastion
coclaent into the boundsry layer is not very large, however, as 1s noted
when the rest of the curves are compared with the f£(0) = 0 curve, which
represents the temperature distribution caused by cooling the upstream
section to T, by some internal cooling system.

Practical Implicetions of Results

Figures 5 and 6 show how the skin friction and heat transfer behave
on the nonporous section when sir is trenspired in the porous section.
The parameter of “thése curves, £(0), however, does not provide a satis- .
factory criterion for e practical evaluation of the usefulness of the
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cooling system undexr analysis. A more useful criterion is the total
coolant flow rate. This permits comparison of various cooling systems on
& corresponding welght basis.

Por instance, it is interesting to know how the average skin friction
on a plate changes as the proportion of the lengths of the porous and
nonporous regions is varied, sublect to the restriction that the total
coolant flow rate he constent. Thus, as the porous region is reduced in
length (actuelly srea), the rate of coolent flow per unit area is
incressed. It 1is qulte easy to calculate these effects using the results
of figure 5. Thus, In figure T, the ratio of the average skin friction
on the plate to the corresponding average skin friction on an entirely
solid plate is plotted as a function of the fractionsl length of the plate
that is porous. The parameter of each curve is a dimensionless group con-
talning a term representing the total coclant flow rate, w. Starting from
the right side of the figure, it 1s noted that for a completely porous
plete (xo/L = 1) there is a considersble reduction in skin friction for
each coolant rate. As the fraction of porous surface is reduced, xo/L
beconing smaller, it 1s rather surprising that the reduction in average
skin friction is even greater for each of the total coolant rates. Appar-
ently, the grester reduction in the local skin~friction coefficient over
the porous section of the plate due to the higher locel coolant rate more
than compensates for the rise in local skin friction experienced over the
nonporous section as shown in figure 5. The line, at the left, represents
an estimate of the lower bound of these results, because at a fixed totel
coolant rate the local coolant rete at points to the left of this dashed
line becomes sufficiently large to separate the leminsr boundary layer.
The curves are drawn as far to the left as the information in figure 5
allows. It eppears, therefore, that on the basis of average skin frietion,
no pensalty results from restricting the transpireation cooled portion to a
frection of the totel length of the plate when a given total amount of
coolant 1s used.

In figures 8(a) and (b), there are shown the temperature distributions
that result from using a fixed quantity of coolant flow with various
lengths of porous regions. The ordinate represents the surface tempera-
ture expressed in terms of the recovery temperature, which for Pr =1
is the total temperature, and the initial coolant temperature. It can be
seen in figure 8(a) that for the amount of coolant used, a fully porous
plate would result in a dimensionless surface temperature of sbout 0.66.
The temperature distributions resulting from the plate being 0.5, 0.25,
and O.l porous are indiceted also. For these cases, the temperature of
the porous regions is reduced markedly because of the high local rate of
coolant flow. The reductions in the porous surface temperature, however,
are not sufficient to lower the surface tempersture over most of the rest
of the surface down to the wvalue of the fully porous case. It is signi-
ficant that even at the end of the plate, in these examples, the surface
temperature is well below the recovery tempersture. As an exsmple of
these temperatures consider an aircraft flying at a Mach number of 5
under steady-state conditions, where the recovery tempersture is sbout
1770°F. If cooled as in Figure 8(a) with sn entirely porous surface and
g laminar boundary lsyer, the surface tempersture would be about 1220° F
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for an initial coolent temperature of 150° F. With partial cooling, the
maximm temperature at the trailing edge would be sbout 1460° F, or still
gbout 300° F below the recovery temperature.

The effect of doubling the coolant flow rate is shown in figure 8(b).
For the fully porous case the dimensionless surface temperature becomes
ebout O.4. The only partially porous cese shown is where the plate is
0.25 porous. Agsin the dimensionless tempersture is low over the porous
region (about 0.07) and rises rapidly in the nomporous region reeching a
value of 0.66, which happens to be the value obtained on the fully porous
plete with half the coolant flow. Thus, to maintein a prescribed maximum
surface temperature, the partially porous surfaces will require more total
coolant than fully porous surfaces.

CONCLUDING REMARKS

An analysis has been made that determines the effect of upstream
surface tranepiration cooling on the skin-friction and heat~transfer
characteristics of a compressible, laminar boundary leyer on e flat plate.

The skin friction has been found to heve a low value in the region
of transpiration cooling and then to increasse until it approaches asymp=-
totically the value for a completely nonporous surface. The initial
increase in skin friction 1s rapid as half of this ultimate increase
oceurs 1ln a distance beyond the porous region that 1s only about 20 percent
of the length of the porous reglon for ell rates of injection. When the
totel coolant flow rate is kept constant, however, 1t is found that the
average skin friction on a partislly porous plate is even lower than that
on a fully porous plate. This occurs because the local transpiration rate
per unit area ilncreases for the shorter porous regions so that additlonal
reductions in skin friction in the porous region compensates for the rapid
increase in the skin friction over the nonporous region.

Heat-transfer solutions for the nonporous region were obtained for
two types of problems: <+the local heat-transfer rate can be found 1f the
surface temperature distribution is given, and the surface tempersture
distribution can be found if the local heat-transfer rate is glven. A
detailed exemple was presented - the solution to the problem of determin-
ing the temperesture distribution along the nonporous surface so that there
is zero heat transfer at the surface. This corresponds to a thin surface
at equilibrium behind & transpiration-cooled reglon. From this example,
it was found that the temperature rises from the value of the transpira-
tion cooled surface and approaches the recovery temperature at large
distances along the plate. The initial rise in temperature is qulte

-rapid as helf of the ultimate rise in temperature occurs in the region
between 1.3 and 2.0 times the porous length, for the range of transpira-
tion coolant rates considered. For constsnt coolant flow rates, with
varying proportions of the porous region length to the total length, it
1s found that the additional cooling in the porous region due to the
higher local coolant flew does not compensate for the rgpid rise in
temperature over the nonporous region so that the surface temperatures
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at the end of the plate are larger than would exist on a fully porous
plate. For the exemples shown, the temperature at the end of the par-
tially porous plate could be maintained at about the same tempersture as

a fully porous plate by doubling the total rate of coolant flow. In
practical application, the increased flow requirements of the partislly
porous system may be offset somewhat when considerations are made of the
weight of the porous surface supporting structure and of thermal radiation
from the surface on transient effects which normally cause the resr
regions on a surface to have less temperature problems.

Ames Aeronautical ILeboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., March 7, 1957
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APPENDIX A
MATHEMATICAT. DETATIS OF THE ANATYSIS
Transformation of Basic Equetions
Bagic equations, assumptions, and boundsry conditions.- The basic

equations for a compressible, laminsr boundary leyer with no pressure
gradient are:

Continulty equation

_é_xa_' (plul)+_§. (plvt) =0 (Al)
Momentum equation
otu! %;’-%-1- ptv? g;: = as, (p-' g;:> (42)

Energy equation _
2
prutey -g-;rc—:-+p'v'cp 23: = 53" (k' §:)+u'<-§;—:-> (A3)

A number of assumptions about the boundery~leyer fluid are made %o
simplify the analysils:

cpu! ,
l. Pr=—p =1 (Ak)
2 Cp = constant

3. The fluid is assumed to behave as a perfect gas, which has an
equation of state.

p' = p'RT! (45)
w, ' _ oIt (a6)
Poo T

As a result of the first two assumptions, the energy equation (A3)
becomes _
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The boundary conditions for the nonporous region, x*! > x4', are

y*=0: ut =0, vt =0, Tt = T, *(x?)
(a8)
¥ P oo ut->u,, Tt> T,

Stewartson transformation of verisbles.~ The independent varisbles
(xt, y') are replaced by a new set of varisbles (x, y) in which the y!?
coordinate is modified to take into account the compressibility as done
by Stewartson (ref. 5).

X = x!
t
fy p! (49)
= — b
y P dy
o

The formilas releting the derivatives wlth respect to the physical
and transformed independent vearisbles are

&) -2 @)
SEEGIOION

The dependent variables are then related to a stream function V,
which satisfies the continuity equation and is related to the veloeity
components as follows:

) (410)

(A11)

Substitution of equations (A10) and (All) with the assumptions (A5)
and (A6) into equations (A2) and (A7) yields
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OE-@E @)
DE- @@~ 3@ w

To put these equations in the famlliar form of the imcompressible
equations, let u and v be defined by

(ALk)

It is noted from equations (A10) and (All) that u = u', or that the
transformed velocity and the physical velocity components in the x or xt
directions are identical. The preceding definition for u and v results
in a continuity equation identical to that for an incompressible flow.

N )

Substitution of equations (Alk) into (Al2) and (A13) results in
momentum and energy equatlons identical to those for an incompressible
flow. .

u%w%:c%%%— (a16)
AT _ Pr 1 (Y
u -&+V Sy Cvo [’g-z- + o (-g) ] (A17)

The primes on the Tt!s are dropped for simplieity. Hence, by use of the
Stewvartson transformetion, the compressible boundery-layer equations have
been reduced to equivalent incompressible equations.

In terms of the new coordinates, the boundary conditions (A8) for
the nonporous region, x > X5, become
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y=0: u=0,v=0,T="Ts(x)
(a18)
¥=> 0 u> U, T=> Th

Solution of Momentum BEquation for Skin Friction

Seventh-degree polynomial velocity profile and evaluation of
coefficients .~ The boundary-layer velocity profile is approximated by a
seventh~degree polynomisl in terms of y/S, where 8 1is the transformed
boundary-layer thickness.

n=7
LY e (219)

Voo
=1

The mth derivative with respect to y is
n=7

:;I(ur)ﬂl)l = -gu;;Z;L n(n-1). . .(n-m+l)an(x)<% o (a20)

The slope at the surface is

@>y=o = % (A21)

where a 1is the coefficient of the first power term and is a messure of
the shear stress at the surface.

The introduction of the seventh-degree polynomial velocity profile
adds seven unknown coefficients to the problem, in addition to the
boundaery-layer thickness, for a totsl of eight unknowns. With the momen-
tum integral equation as one eguation, seven other equations are required
in order to obtain a solution. These equations asre obtained by imposing
seven conditione on the seventh-degree polynomisl veloeity profile. Four
of the conditions are boundery conditions imposed on the velocity and its
derivatives at the outer edge of the boundery layer. To insure that the
local velocity in the boundary layer approaches the free-stream velocity
smoothly, it is required that for y = 0,
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U = Uy

3 3By (A22)

u_Fu_Su_,
oy oy®
Substituting these conditions into equations (Al9) and (A20) yields

’
ataptestagtastasgtar = 1
a+2as+3agas+bastbag+Tar = O
) (423)
ap+3ag+bas+l0as+lbas+2lay = O

ag+iags+1l0as+208a+35a7 = O

=

Before the remaining conditions ere imposed, the first and second
derivatives with respect to y of the momentum equation (Al6) are
required. The first derivative is

u aa:gy +v§=0v@'% (A2k)
and the second derivative is
Suo% ., 0% _ Judfu - o*u
8y8:c8y+u8:c3y2 axaye“’% °"°°ay4 (A25)

The three remsining conditions are imposed at the surface. To insure that
the veloeity profile has the correct slope and curvature at the surface,
the seventh-degree polynomial with the boundary conditions, u = v = 0, is
substituted into the momentum equation (A16) and its derivatives (A2k)

and (A25). There results

end an ordinery differentiel equation

a 2ho
(= 5) - S e
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Equations (A23) and (A26) constitute a system of six algebraic
equations with seven unknowns. These egquations are solved simultanecusly
to obtain all the unknowns in terms of the coefficient of the first
term, =a.

8o = 0 W
g = 0
84 = 35-20a
> (a28)
as = 45a-8L
ag = T70-36a
87 = 103-20
J

Substituting a4 from equastion (A28) into equetion (A27) and
carrying out the differentiation yields

U8B da das\y _
CVoo (8 dx-a ax/ = (35 208')211' (A29)
This equation, in part, determines how the slope of the velocity profile
at the surface varies with the distance along the surface.

Momentum integral equation.- The momentum integral equation is
obtained by integrating the momentum equation (A16) from y = O to y = 8.

3
2@ 20D e

The assumed velocity profile (A19) with the coefficients expressed in
terms of a from equations (A28) end the slope at the surface given by
equation (A21) are substituted into equation (A30). The integration is
carried out to yield

%% = % [8(A;+Ana-Aga2)] (A3L)
where
A; = 0.09518
Ao = 0.04371 (A32)
As = 0.01832
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Reduction of problem to solution of two simultaneous ordinary
differential equations.-~ Equations (A29) and (A3l) form a system of two
similtaneous ordinsry differentisl equations in a, 3, and x. These
equations can be simplified by expressing © and x in terms of Reynolds

numbers. ~ T
- Sue
Rs = Cveo
(A33)
R, = X%
X~ Cva

Substituting these Reynolds numbers into equations (A29) and (A31)
yields

Rsa.(Ra Lo - g‘?;) - £k(35-20a) (A3)
-;—'g = T%}(—[R&(A1+A2&‘A332)] (A35)

The preceding equations can be manipulated to seperate the derivatives
and yield

dR o, (a)
ERTE - ;5 (A36)
2-cel) (a37)
where
1 3
100 "7A2+( )-I-A2+11|-A3 )8.+<1—2-6 ’&3}&2
aa(a) = Py A S
1+2Apa~3A8!
) (A38)
ae(a) ) 120 7A1+(7A2")+A1 )a— ( )-l-A.2+7A.3 )&2+<120 +}+A3)a3
a A;4+2hp8-3Ag8° )

The Reynolds numbers Rs and Ry can be normelized by substituting
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£ = By x W
Rxo X0
Ry _
8% = == = 2 (a39)
=g )
oo
DA =
[o] Rxo
P
Equations (A36) and (A37) then become
ast  aa(a)
aE " Dot (AL0)
da _ _(._é“'z 8 I
d¢  Do(d%) (A41)

The initial conditions at this stage are
£ =1, 8% =1 (ak2)

Before the equations can be solved, 1t 1s necessary to know the initlal
condltions for a and Dg.

Determinstion of initisl conditions for solution of momentum
equation.- Before a solution can be obtained for equations (ALO) and (Al1),
it is necessary to obtain the initial conditions for =a and Do by match-
ing the seventh-degree polynomisl, both in thickness and slope at the
surface, to the exact profile at the end of the transpiration-cooled
region. Since the seventh-degree polynomial profile assumes a finite
boundary-layer thickness, whereas in the exact profile the velocity
spproaches the free-stream veloclty asymptotically, a problem arises in
defining the oubter edge of the boundsry layer. In thls analysis the no
transpiration or Blasius case is used to make this definition.

For the Blasius case, the shear stress at the surface, or the skin-
friction coefficient, varies as Ryx™1/2, and the boundary-layer thickness
varies as Ryl/2. The product of the two quantities is, therefore, inde-
pendent of Ry. For the present solution, the product of the shear stress
at the surface, which 1is proportional to the slope at the surface as given
in equation (A21), and the boundery-layer thickness is s function of a
alone. For a to be independent of Ry, it follows from equation (437)
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thet ap(a) = O or ag = 1.871. This value of ap for the seventh-degree
polynomisl with no transpiration cooling must now be related to the exact
solution. )

The following relations for the exact solution sre obtained from
reference 2.

R = 2[Ry s (a43)
e 1127(0)

> T T (Akk)
u 1

o =2 T'(ns) (ak5)

The function f£(n) is a dimensionless stream function, and 7 is the
similarity varieble with ng denoting 1ts value at the outer edge of the
boundary layer.

The local skin-~friction coefficient ls defined as

e . Ts' 16
2 O 1 2 (‘A )
where
dut
Ts' - uts(?) =0 (ALI-T)

For the present snalysis, the local skin~friction coefficient is
obtained by substituting equations (A5), (A6), (A10), (A21), and (ANT)
into equation (A4k6). There results .

er _ a
¥-= (a48)

The boundary-layer thickness and the locsl skin-friction coefficlent,
which is determined by the slope of the veloclty profile st the surface,
for the seventh-degree polynomisl solution end the exact transpiration
cooling solution ere now equated. From equations (A43), (ALk), and (ALB)
there resulis

15 = 5y (ak9)
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With no transpiration cooling, ag = 1.871, £"(0) = 1.3282, and
N = 2.8L8. From table IT of reference 2 and the relation (AL5), the
outer edge of the boundary layer is defined as the point where the
veloclty ratio is

L - 3 £1(ng) = 0.9976 (450)

This definition is used to define the boundary-layer thickness when
transpiration cooling occurs.

The initial conditions for the solution of equations (A4O) and (All)
are thus determined as follows: A value of £(0) is selected using
equation (5), the ebsolute magnitude of £(0) being proportional to the
amount of transpiration cooling. With the ocuter edge of the boundary
layer defined by equation (A50), the value of Ns 1is determined from
table II, reference 2. Then a is calculated from equation (Ak9), and
Do 1s calculated from equation (A%3). With these initial conditions,
the system of two simultaneous ordinary differential equatioms (ALO)
and (All) was integrated numericsally on an IBM 650 computing machine to
obtain a end &t as functions of E for E =1%o ¢ =10. Five differ=
ent transpiration cocling raetes were seleected, lncluding the Blasius case.
The results are expressed in terms of the local skin-friction coefficient
as given by equation (AkS8).

Solution of Energy Egquetion

Separation of solutions.- Because the surface temperature of the
nonporous reglon will normally differ from the constant surface tempera-
ture of the transpiration-cooled region, it is necessary In this analysis
to obtain a solution of the energy equation (Al7) that accounts for sur-
face temperature variations. The method of solution followed will be to
obtain a solution for the complete Iinhomogeneocus energy equation when the
porous and nonporous reglons are at the same tempersture. Then solutlons
of the homogeneous portion of the energy equatlon are added to satisfy
the surface tempersture boundary conditions. This sddition of solutions
ie permissible because the energy equation is linesr 1n temperature.

Solution of inhomogeneous energy equatlion.-~ The inhomogeneous energy
equation (Al7) is solved for the case of a constant surface temperature,
Te. If the momentum equation (Al6) is multiplied by u/ep and added to
the energy equation (A17), there results

9 u2 o) u2\ _ 2 u2
u-& T+§c—P' +v E T+—2-€; —Cvool:-&;é- T+2—c-£>} (A51)

Because this equation has the same form as the momentum equation, if u
is a solution of the momentum equation, then
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P42 o CqueC (A52)
20P . vl 2

must be a solution of the energy equation. When the boundery conditions,

u=O,T=TC

(A53)
W= Uoy T = T
are imposed, the unknown constants,
Ty-To
Ciy = ™
(a5k)
Cz = Te

ere determined. Hence, an exact solution of the energy equation for the
case of a constant surface temperature is

Tp = (T-To) S5+ Tom o (a55)

Solution of homogeneous energy equetion for single discontinuity in
surface temperature.- The homogeneous energy equation is solved for a
single discontinuity in surface tempersture. The boundery conditions on
the surface tempersture sre for

X<XJ, T =T,
(856)

X > X3, T = Tg

where X3 > Xo 1s the location of a surface temperature discontinuity.

In order to obtein a solution of the homogeneous portion of the
energy equation, which is equation (A1l7) with the viscous dissipation
term neglected, the boundary-layer velocity profile is assumed linear
with the correct slope at the surface, as determined previously in the
solution of the momentum eguation. The x component of veloclity is
assumed to be

u=s(x)y = <%;>y=oy (A5T)
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The ¥y component of velocity is obtained by integrating the continuity
equation (Al5) with respect to y.

B 3@ o

The tempersture distribution in the boundsry layer is assumed to be
a function of & single parameter {, where

T
gnd
¢ = X(x)¥(x, x3)y (260)
where X and ¥ are two arbitrery functions of x and xs;. From

equations (A56), (A59), and (A60), the boundsry conditions on 6 are

x<x3: ally, 6 =1
all x: y> o, g =1 (A61)
x>x3t y=0, 8 =0
Substitution of equations (A5T), (A58), (A59), and (A60) into the
homogeneous portion of the energy equation (417) yields
2 2
5 _(Lax , 1lar 1 4s) oy, a%/at® (a62)
Y \Xdx Ydax ©2s dx & de/ag

If ¢ and x are independent variables, both sides of equation (A62) must
equal a constant, say =Cvg

g Gs‘l+id_Y__l_iS. = ~CVe (A63)

20,28 _ g (a6k)
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Since X 1is an arbitrary function of =x, let

1l dxX 1l 4
Fax Brax O (a65)
Upon integration,
= 0381/2 (A66)

Substituting equation (A66) into (A63), there results

L& o0, (a67)

Upon Iintegration with the boundary condition, X =X4, Y>> o, the arbitraxry
function Y 1s determined as

- 1
Y= n 3 (A68)
Ca{ 3CVeo [ st/ 23x
J
The varisble ¢ i1s from equations (A60), (A66), and (A68),
_ vy = st/2y
¢ = XYy = » T3 (A69)
3Cveo f s/ 23x
*J

The function 6 is found by integrating equation (A64) with the boundary
condition 6(0) = 0.

4
0 = C4 f e'cs/sag | (AT0)

[0

The constant (4 is determined from the boundary comdition, 6(x) = 1.
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1 _ 1
JF“;-gs/sdg 31/3ﬂ<§)
o)

The complete solution of the homogeneous equation for the boundary
conditions (A61l) is

(A71)

o(t) = —= - =

d
- f e
To=Tg 31L3P<2£) A

“t°/25¢ (a72)

General solution of energy equation.- Addition of solutions (A55)
and (A72) with x; = X5 Yields the temperature distribution in the
boundary layer of a flat plate with the porous surface at a constant
temperature T and the nonporous surface at a different constant htem-
perature Tg. In order to obtain the solution when the temperature of
the nonporous surface is srbitrary, homogeneous solutions of the form
(A72) can be added as shown in reference 6, because the energy equation
is linear in temperature. For r surface temperature discontinuities
in the nonporous region, x > x5, the temperature is given by

J=r-1
T(x,y) = Tp-T+ Z (TSJ-TSJ+1)6(x,y,xJ)+TBr (A73)
J=1
where
Tsl =T,

As r> «, the summation approaches an integrsl such that

X
dT,
T(x,y) = Tp-Te+Tg(x)- f %’?—l 6 (x,¥,%1 )ax; (A7)
%o

The generasl solution of the energy equation for an arbitrary surface
temperature distribution in the nonporous region is then

X
2
(x,¥) = T (x)H{Te-Te) 5 - pe5 - f ela) ox,y,xa)axs  (ATS)
X0
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It should be noted from equations (A9) and (A10) that

dT dTg!?
X T (a76)

Heat transfer at the surface.- The heat transfer at the surface per
unit area is by definition end from equation (a10)

ag = -ks@-yf-:-)y':o - —Ckm(%)y=o (aTT)

Substitution of equation (A75) into (ATT) yields

s =~ —152 (T6=Te (gy)y=o+Ck°°f 3 (Xl) <de>y—o< (a78)

From equation (A69)

(gys) y=0 ) 3 = (A79 )

x /3
3CVe 5[ sl/23x
‘o)

From equation (AT72)

(%‘g)m - 3_”3_;@5 (480)

Substituting equations (A79) end (A80) into (A78) results in the equation
for the heat trensfer at the surface for a given surface temperature
distribution.

aTs(x,)
Ckoo(Tt"Tc)B 302\ % e 1’2 L
ag(x) = o3 axy (A1)

(3 * ( 2@)
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The variables are normalized by letting

= =
g %5
(a82)
o)
+ = =
5] S
Also, the following substitutions are made
s}
a o
a == =—g(x
(a83)

g
o(t) = f Jole) at
1

Then, the heat transfer at the surface, equation (A8l), in terms of the
normslized varisbles becomes

£ de(gl)
- _ PP 17y - - 1/s dt,
as(E) e, a(t) | (Te-Te WolE) -0.538D0 [[¢(§)_¢(§l)]us a2

(a8k)

Surface temperature with prescribed heat transfer at the surface.-
With the heat transfer at the surface prescribed, the surface temperature
is given by the following integral equation based on equation (ABh).

E aTs(E1)

dE,
J [o(e)-o(g1)]Y 2

ag, = a(t) (285)

where

.858 I Bs qs(§)“
a(t) - ;oﬁés [pmu:cp ok (24T WalE) | (486)
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The independent variable is now changed from & to ¢ in equation (A85)
to yield
ar
® s(¢1)

[o}

The integral equation now has the same form as Volterra's equation of the
first kind with the kernel becoming infinite at the upper limit. Solution
of this equation 1s given in reference T.

arg(e) _sin (/3) a[ ¥ 2(ei)de

— AB8
o % ap|J (e-02)*® (188)
Upon integrastion from ¢ = O to o,

T (C[J) = sin (“/3) fcp 9(@1)6-@1 (A89)

® * J (o)

Now the independent varisble is changed back to §

g
1, (8)-T, = sin (%/3) f ot Woles) aty (450)
x  J [o(e)-e(£1)1¥°

Consider the special case where the nonporous surface is insulated or
ag(t) = 0 in equation (A86). Then

1
I 3)
a(e) = CREE (Tp-To Wo(E) (491)

The temperature of the insulated surface 1s then

T (€ )=T, 0-512f§ o(E1)aks
(A92)

Tt"Tc ) Dolls 1 [q)(g)-cp(gl)Jle

Solution of equstion (A92) was performed on an IBM 650 computing machine.

L ]
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TABLE I.- EFFECT (F UPSTREAM TRANSPIRATTON COOLING RATES

ON INITIAL CONDITIONS FOR PRESENT ANALYSTS

F=£(0) Do o(1)
o) 31.76 | 1.871
-.25 37.77 | 1.50k
-.50 hs .97 1.115
~.75 58.83 718

-1.00 83.87 325
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Figure 1.~ Sketch of boundary leyer on a flat plate with upstream transpiration cooling.
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Figure 2.- Distribution of dimensionless shear funection along plate.
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Figure 5.- Local skin friction on a flat plate with upstream gurface transpiration cooling.
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Figure T.~ The effect on the average skin friction of varying the porous
length of & partielly transpiration-cooled plate subject to constant
total coolant rate.
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Figure 8.~ The effect on the temperature distribution of varying the
porous length of a partislly transpiration-cooled plate subject to
constant total coolant flow at a fixed temperature.
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